

So far this seems prety easy.

$$
3^{4}=3 \times 3 \times 3 \times 3=81
$$

Exponents

exponent

Example: $125=5^{3}$ means that 5^{3} is the exponential form of the number 125.
5^{3} means 3 factors of 5 or $5 \times 5 \times 5$

The Laws of Exponents:

\#1: Exponential form: The exponent of a power indicates how many times the base multiplies itself.

$$
\begin{aligned}
& x_{n-\text { times }}^{n}=\underbrace{x \cdot x \cdot x \cdots x \cdot x \cdot x \cdot x}_{n \text { factors of } x}
\end{aligned}
$$

Example: $5^{3}=5 \cdot 5 \cdot 5$
\#2: Multiplying Powers: If you are multiplying Powers with the same base, KEEP the BASE \& ADD the EXPONENTS!

$$
x^{m} \cdot x^{n}=x^{m+n}
$$

So, I get it! When you multiply
Powers, you add the exponents!

$$
\begin{array}{r}
2^{6} \times 2^{3}=2^{6+3}=2^{9} \\
=512
\end{array}
$$

\#3: Dividing Powers: When dividing Powers with the

 same base, KEEP the BASE \& SUBTRACT the EXPONENTS!$$
\frac{x^{m}}{x^{n}}=x^{m} \div x^{n}=x^{m-n}
$$

So, I get it! When you divide Powers, you subtract the

$$
\begin{aligned}
\frac{2^{6}}{2^{2}}=2^{6-2} & =2^{4} \\
& =16
\end{aligned}
$$

Try these:

$$
\begin{array}{ll}
\text { 1. } \quad 3^{2} \times 3^{2}= & \text { 7. } \frac{s^{12}}{s^{4}}= \\
\text { 2. } 5^{2} \times 5^{4}= & \text { 8. } \frac{3^{9}}{3^{5}}= \\
\text { 3. } a^{5} \times a^{2}= & \text { 9. } \frac{s^{12} t^{8}}{s^{4} t^{4}}= \\
\text { 4. } 2 s^{2} \times 4 s^{7}= & \text { 10. } \frac{36 a^{5} b^{8}}{4 a^{4} b^{5}}= \\
\text { 5. }(-3)^{2} \times(-3)^{3}= & \\
\text { 6. } \quad s^{2} t^{4} \times s^{7} t^{3}= &
\end{array}
$$

SOLUTIONS

$$
\begin{aligned}
& \text { 1. } 3^{2} \times 3^{2}=3^{2+2}=3^{4}=81 \\
& \text { 2. } 5^{2} \times 5^{4}=5^{2+4}=5^{6} \\
& \text { 3. } a^{5} \times a^{2}=a^{5+2}=a^{7}
\end{aligned}
$$

$$
\text { 4. } 2 s^{2} \times 4 s^{7}=2 \times 4 \times s^{2+7}=8 s^{9}
$$

5. $(-3)^{2} \times(-3)^{3}=(-3)^{2+3}=(-3)^{5}=-243$
6. $s^{2} t^{4} \times s^{7} t^{3}=s^{2+7} t^{4+3}=s^{9} t^{7}$

SOLUTIONS

$$
\begin{aligned}
& \text { 7. } \frac{s^{12}}{s^{4}}=s^{12-4}=s^{8} \\
& \text { 8. } \frac{3^{9}}{3^{5}}=3^{9-5}=3^{4}=81 \\
& \text { 9. } \frac{s^{12} t^{8}}{s^{4} t^{4}}=s^{12-4} t^{8-4}=s^{8} t^{4} \\
& \text { 10. } \frac{36 a^{5} b^{8}}{4 a^{4} b^{5}}=36 \div 4 \times a^{5-4} b^{8-5}=9 a b^{3}
\end{aligned}
$$

\#4: Power of a Power: If you are raising a Power to an

 exponent, you multiply the exponents!$$
\left(x^{m}\right)^{n}=x^{m n}
$$

So, when I take a Power to a power, I multiply the exponents

\#5: Product Law of Exponents: If the product of the

 bases is powered by the same exponent, then the result is a multiplication of individual factors of the product, each powered by the given exponent.$$
(x y)^{n}=x^{n} \cdot y^{n}
$$

So, when I take
a Power of a
Product, I apply the exponent to all factors of the product.
Ae.abceDdEgFfeghhIiJjkkLIMmNn

$$
(a b)^{2}=a^{2} b^{2}
$$

\#6: Quotient Law of Exponents: If the quotient of the

 bases is powered by the same exponent, then the result is both numerator and denominator, each powered by the given exponent.

So, when I take a Power of a
Quotient, I apply the exponent to all parts of the quotient.

Try these:

1. $\left(3^{2}\right)^{5}=$
2. $\left(a^{3}\right)^{4}=$
3. $\left(2 a^{2}\right)^{3}=$
4. $\left(2^{2} a^{5} b^{3}\right)^{2}=$
5. $\left(-3 a^{2}\right)^{2}=$
6. $\left(s^{2} t^{4}\right)^{3}=$
7. $\left(\frac{s}{t}\right)^{5}=$
8. $\left(\frac{3^{9}}{3^{5}}\right)^{2}=$
9. $\left(\frac{s t^{8}}{r t^{4}}\right)^{2}=$
10. $\left(\frac{36 a^{5} b^{8}}{4 a^{4} b^{5}}\right)^{2}=$

SOLUTIONS

$$
\begin{aligned}
& \text { 1. }\left(3^{2}\right)^{5}=3^{10} \\
& \text { 2. }\left(a^{3}\right)^{4}=a^{12} \\
& \text { 3. }\left(2 a^{2}\right)^{3}=2^{3} a^{2 \times 3}=8 a^{6} \\
& \text { 4. }\left(2^{2} a^{5} b^{3}\right)^{2}=2^{2 \times 2} a^{5 \times 2} b^{3 \times 2}=2^{4} a^{10} b^{6}=16 a^{10} b^{6} \\
& \text { 5. }\left(-3 a^{2}\right)^{2}=(-3)^{2} \times a^{2 \times 2}=9 a^{4}
\end{aligned}
$$

$$
\text { 6. }\left(s^{2} t^{4}\right)^{3}=s^{2 \times 3} t^{4 \times 3}=s^{6} t^{12}
$$

SOLUTIONS

$$
\text { 7. }\left(\frac{s}{t}\right)^{5}=\frac{s^{5}}{t^{5}}
$$

8. $\left(\frac{3^{9}}{3^{5}}\right)^{2}=\left(3^{4}\right)^{2}=3^{8}$
9. $\left(\frac{s t^{8}}{r t^{4}}\right)^{2}=\left(\frac{s t^{4}}{r}\right)^{2}=\frac{s^{2} t^{8}}{r^{2}}$
$10\left(\frac{36 a^{5} b^{8}}{4 a^{4} b^{5}}\right)^{2}=\left(9 a b^{3}\right)^{2}=9^{2} a^{2} b^{3 \times 2}=81 a^{2} b^{6}$

\#7: Negative Law of Exponents: If the base is powered

 by the negative exponent, then the base becomes reciprocal with the positive exponent.So, when I have a Negative Exponent, I switch the base to its reciprocal with a Positive Exponent.

HaHa
If the base with the negative exponent is in the denominator, it moves to the numerator to lose its negative sign!
 $5^{-3}=\frac{1}{5^{3}}=\frac{1}{125}$
and
$\frac{1}{3^{-2}}=3^{2}=9$

\#8: Zero Law of Exponents: Any base powered by zero

 exponent equals one.$$
x^{0}=1
$$

So zero factors of a base equals 1. That makes sense! Every power has a coefficient of 1 .

$$
\begin{gathered}
5^{0}=1 \\
\text { and } \\
a^{0}=1 \\
\text { and } \\
(5 a)^{0}=1
\end{gathered}
$$

Try these:

$$
\begin{aligned}
& \text { 1. }\left(2 a^{2} b\right)^{0}= \\
& \text { 2. } \quad y^{2} \times y^{-4}= \\
& \text { 3. } \quad\left(a^{5}\right)^{-1}= \\
& \text { 4. } s^{-2} \times 4 s^{7}=
\end{aligned}
$$

5. $\left(3 x^{-2} y^{3}\right)^{-4}=$
6. $\left(s^{2} t^{4}\right)^{0}=$
7. $\left(\frac{2^{2}}{x}\right)^{-1}=$
8. $\left(\frac{3^{9}}{3^{5}}\right)^{-2}=$
9. $\left(\frac{s^{2} t^{2}}{s^{4} t^{4}}\right)^{-2}=$
10. $\left(\frac{36 a^{5}}{4 a^{4} b^{5}}\right)^{-2}=$

SOLUTIONS

$$
\begin{aligned}
& \text { 1. }\left(2 a^{2} b\right)^{0}=1 \\
& \text { 2. } y^{2} \times y^{-4}=y^{-2}=\frac{1}{y^{2}} \\
& \text { 3. }\left(a^{5}\right)^{-1}=\frac{1}{a^{5}} \\
& \text { 4. } s^{-2} \times 4 s^{7}=4 s^{5} \\
& \text { 5. }\left(3 x^{-2} y^{3}\right)^{-4}=\left(3^{-4} x^{8} y^{-12}\right)=\frac{x^{8}}{81 y^{12}}
\end{aligned}
$$

6. $\left(s^{2} t^{4}\right)^{0}=1$

SOLUTIONS

$$
\begin{aligned}
& \text { 7. } \left.\left(\frac{2^{2}}{x}\right)^{-1}=\frac{4}{x}\right)^{-1}=\frac{x}{4} \\
& \text { 8. }\left(\frac{3^{9}}{3^{5}}\right)^{-2}=\left(3^{4}\right)^{-2}=3^{-8}=\frac{1}{3^{8}} \\
& \text { 9. }\left(\frac{s^{2} t^{2}}{s^{4} t^{4}}\right)^{-2}=\left(s^{-2} t^{-2}\right)^{-2}=s^{4} t^{4} \\
& \text { 10. }\left(\frac{36 a^{5}}{4 a^{4} b^{5}}\right)^{-2}=9^{-2} a^{-2} b^{10}=\frac{b^{10}}{81 a^{2}}
\end{aligned}
$$

