D.A.V. PUBLIC SCHOOL, BARIATU, RANCHI.

Class XII (2021 – 22)

Holiday Assignment in Mathematics

I) Case Study Questions:

CASE STUDY - I

A relation R on a set A is said to be an equivalence relation on A iff, R is

- (i) Reflexive, i.e., a R a \forall a ϵ A
- (ii) Symmetric, i.e., a R b \Rightarrow b R a, a \forall (a, b) ϵ R
- (iii) Transitive, i.e., a R b, b R c \Rightarrow a R c, \forall a, b, c ϵ A

Answer the following questions using this information:

	1)	R = { (a, b), (b, a), (c, a), (a, c)} is a relation defined on the set {a, b, c}. R is				
		(a)Reflexive	(b) Symmetric	(c) Transitive	(d) None of these	
2)		Let A = {1, 2, 3} and R = { (1, 2), (2, 3), (1, 3) } be a relation on set A. Then R is				
		(a)Neither reflexive nor transitive		(b) neither symmetric nor transitive		
		(c)Reflexive		(d) Transitive		

3) In the set Z of all integers, which of the following is not an equivalence relation?

(a)R: $x R y \Rightarrow x \le y$ (b) R: $x R y \Rightarrow x = y$

(c)R: x R y \Rightarrow x – y is an integer (d) All the above

A relation R = { (1, 1), (2, 2), (3, 3), (1, 3) } is defined on a set A = {1, 2, 3}. The ordered pair to be
 Added to R so as to make it the smallest equivalence relation is

(a)(2, 1) (b) (3, 1) (c) (2, 1) (d) (2, 3)

Case Study – II

We know that a function $f : A \rightarrow B$ given by f(x) = y is bijective if f is both One – One and Onto.

Use this information to answer the following:

- 1) A function f is said to be One One if
 - a) $x = y \Rightarrow f(x) = f(y)$ b) $f(x) = f(y) \Rightarrow x = y$ c) $x \neq y \Rightarrow f(x) = f(y)$ d) $f(x) \neq f(y) \Rightarrow x = y$

2) A function $f: R - \{3\} \rightarrow R - \{1\}$ given by $f(x) = \frac{x-2}{x-3}$ is

a)Injective

b) Surjective

c) Bijective

d) injective but not Surjective

3) Modulus function is

b) Onto But not One - One

- c) Neither one One nor Onto d) Both One one and Onto
- 4) Which of the following functions from Z to itself are bijections?

a) $f(x) = x^3$ b) f(x) = x + 2 c) f(x) = 2x + 1 d) $f(x) = x^2 + x$

CASE STUDY - III

If y = f(t) is a differentiable function of t and t = g(x) is a differentiable function of x, then y = f(g(x)) is a differentiable function of x and $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$. This is called the substitution method or Chain Rule. Use this information to solve the following questions:

1)
$$\frac{d}{dx}(\cos\sqrt{x}) =$$

a)
$$\sin \sqrt{x}$$
 b) $-\sin \sqrt{x}$ c) $-\frac{\sin \sqrt{x}}{2\sqrt{x}}$ d) $\frac{\sin \sqrt{x}}{2\sqrt{x}}$
2) $\frac{d}{dx} (e^{x \sin x}) =$
a) $e^{x \cos x}$ b) $x \cos x (e^{x \sin x})$ c) $(e^{x \sin x})(x \cos x + \sin x)$ d) $(e^{x \cos x})(x \cos x + \sin x)$
3) $\frac{d}{dx} (\sec (\log x^n) =$
a) $\frac{\sec (\log x^n) \tan (\log x^n)}{x^n}$ b) $\frac{n \sec (\log x^n) \tan (\log x^n)}{x}$ c) $\frac{n \sec (\log x^n) \tan (\log x^n)}{x^n}$ d) $\frac{\sec (\log x^n) \tan (\log x^n)}{x}$
4) $\frac{d}{dx} (\sqrt{x^2 + a^2}) =$
a) $\frac{x}{y}$ b) $-\frac{x}{y}$ c) $\frac{y}{x}$ d) $-\frac{y}{x}$

CASE STUDY - IV

If two variables x and y are connected by the relation of the form F(x, y) = k, and it is not convenient to express y in terms of x in the form y = g(x), such a function is called an Implicit function. To find $\frac{dy}{dx}$ in case of implicit functions, we differentiate both sides with respect to x, taking the derivative of the function of y(terms of y), h(y) w.r.t. x as $\frac{d}{dy}(h(y)) \cdot \frac{dy}{dx}$.

Using this information find $\frac{dy}{dx}$ for the following functions.

1. If
$$x^2 + 2xy + y^3 = 41$$

a) $\frac{-2(x+y)}{(2x+3y^2)}$ b) $\frac{2(x+y)}{(2x+3y^2)}$ c) $\frac{-(x+y)}{(2x+3y^2)}$ d) $\frac{(x+y)}{(2x+3y^2)}$

2.
$$e^{x-y} = \log\left(\frac{x}{y}\right)$$

 $a)\frac{y(1-xe^{x-y})}{x(ye^{x-y}-1)}$ $b)\frac{y(xe^{x-y}-1)}{x(ye^{x-y}-1)}$ $c)\frac{x(1-xe^{x-y})}{y(ye^{x-y}-1)}$ $d) - \frac{x(1-xe^{x-y})}{y(ye^{x-y}-1)}$
3. $y = \tan^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right), -1 < x < 1, x \neq 0$
 $a)\frac{-x}{\sqrt{1-x^2}}$ $b)\frac{x}{\sqrt{1-x^2}}$ $c)\frac{-x}{\sqrt{1-x^4}}$ $d)\frac{x}{\sqrt{1-x^4}}$

4. y = x siny

a)
$$\frac{\sin y}{1-x\cos y}$$
 b) $\frac{\sin y}{1-\cos y}$ c) $\frac{\sin y}{1+x\cos y}$ d) $\frac{x\sin y}{1-x\cos y}$

II) SOLVE THE FOLLOWING QUESTIONS:

- 1) Show that $f: [-1, 1] \to R$, given by $f(x) = \frac{x}{x+2}$ is One One. Find the inverse of $f: [-1, 1] \to Range(f)$.
- 2) Let $f: N \to N$ be a function defined as $f(x) = 9x^2 + 6x 5$. Show that $f: N \to S$, where S is the range of f, is invertible. Find the inverse of f and hence evaluate $f^{-1}(43)$ and $f^{-1}(163)$.

3) If
$$f(x) = \frac{3x-2}{2x-3}$$
, prove that $fof(x) = x, \forall x \in R - \{\frac{3}{2}\}$.

- 4) Prove that the composition of two bijective functions is also a bijection.
- 5) Show that the relation R = {(a, b): 2 divides a b} is an equivalence relation on the set A = {0, 1, 2, 3, 4, 5}. Write the equivalence [0].
- 6) Write the Principal Values of the following:

i)
$$\sin^{-1}(\sin(-600^{0}))$$

ii) $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$
iii) $\sec^{-1}\left(2\tan\frac{3\pi}{4}\right)$
7) Simplify: i) $\sin^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right), \frac{\pi}{4} < x < \frac{5\pi}{4}$
ii) $\tan\left\{\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right\} + \tan\left\{\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right\}$

- 8) If $\tan^{-1} x \cot^{-1} x = \tan^{-1} \frac{1}{\sqrt{3}}$, find the value of *x*.
- 9) Prove that $2 \tan^{-1} \left\{ \tan \frac{\alpha}{2} \tan \left(\frac{\pi}{4} \frac{\beta}{2} \right) \right\} = \tan^{-1} \left(\frac{\sin \alpha \cos \beta}{\cos \alpha + \sin \beta} \right)$
- 10) Prove that $\cot^{-1} 7 + \cot^{-1} 8 + \cot^{-1} 18 = \cot^{-1} 3$.