Class XII (2021-22)

Holiday Assignment in Mathematics

I) Case Study Questions:

CASE STUDY - I

A relation R on a set A is said to be an equivalence relation on A iff, R is
(i) Reflexive, i.e., a R a \forall a $\in A$
(ii) Symmetric, i.e., $a R b \Rightarrow b R a, a \forall(a, b) \in R$
(iii) Transitive, i.e., $a R b, b R c \Rightarrow a R c, \forall a, b, c \in A$

Answer the following questions using this information:

1) $R=\{(a, b),(b, a),(c, a),(a, c)\}$ is a relation defined on the set $\{a, b, c\} . R$ is
(a)Reflexive
(b) Symmetric
(c) Transitive
(d) None of these
2) Let $A=\{1,2,3\}$ and $R=\{(1,2),(2,3),(1,3)\}$ be a relation on set A. Then R is
(a)Neither reflexive nor transitive
(b) neither symmetric nor transitive
(c)Reflexive
(d) Transitive
3) In the set Z of all integers, which of the following is not an equivalence relation?
(a)R: $x R y \Rightarrow x \leq y$
(b) R: $x R y \Rightarrow x=y$
(c) R : $x R y \Rightarrow x-y$ is an integer
(d) All the above
4) A relation $R=\{(1,1),(2,2),(3,3),(1,3)\}$ is defined on a set $A=\{1,2,3\}$. The ordered pair to be Added to R so as to make it the smallest equivalence relation is
(a) $(2,1)$
(b) $(3,1)$
(c) $(2,1)$
(d) $(2,3)$

Case Study - II

We know that a function $f: A \rightarrow B$ given by $f(x)=y$ is bijective if f is both One - One and Onto.
Use this information to answer the following:

1) A function f is said to be One - One if
a) $x=y \Rightarrow f(x)=f(y)$
b) $f(x)=f(y) \Rightarrow x=y$
c) $x \neq y \Rightarrow f(x)=f(y)$
d) $f(x) \neq f(y) \Rightarrow x=y$
2) A function $f: R-\{3\} \rightarrow R-\{1\}$ given by $f(x)=\frac{x-2}{x-3}$ is
a)Injective
b) Surjective
c) Bijective
d) injective but not Surjective
3) Modulus function is
a) One - One But not Onto
b) Onto But not One - One
c) Neither one - One nor Onto
d) Both One - one and Onto
4) Which of the following functions from Z to itself are bijections?
a) $f(x)=x^{3}$
b) $f(x)=x+2$
c) $f(x)=2 x+1$
d) $f(x)=x^{2}+x$

CASE STUDY - III

If $y=f(t)$ is a differentiable function of t and $t=g(x)$ is a differentiable function of x, then $y=f(g(x))$ is a differentiable function of x and $\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}$. This is called the substitution method or Chain Rule. Use this information to solve the following questions:

1) $\frac{d}{d x}(\operatorname{Cos} \sqrt{x})=$
a) $\sin \sqrt{x}$
b) $-\sin \sqrt{x}$
c) $-\frac{\sin \sqrt{x}}{2 \sqrt{x}}$
d) $\frac{\sin \sqrt{x}}{2 \sqrt{x}}$
2) $\frac{d}{d x}\left(e^{x \sin x}\right)=$
a) $e^{x \cos x}$
b) $x \cos x\left(e^{x \sin x}\right)$
c) $\left(e^{x \sin x}\right)(x \cos x+\sin x)$
d) $\left(e^{x \cos x}\right)(x \cos x+\sin x)$
3) $\frac{d}{d x}\left(\sec \left(\log x^{n}\right)=\right.$
a) $\frac{\sec x^{n} \tan x^{n}}{x^{n}}$
b) $\frac{\mathrm{n} \sec \left(\log x^{n)} \tan \left(\log x^{n}\right)\right.}{x}$
c) $\frac{\mathrm{n} \sec \left(\log x^{n}\right) \tan \left(\log x^{n)}\right.}{x^{n}}$
d) $\frac{\sec \left(\log x^{n}\right) \tan \left(\log x^{n)}\right.}{x}$
4) $\frac{d}{d x}\left(\sqrt{x^{2}+a^{2}}\right)=$
a) $\frac{x}{y}$
b) $-\frac{x}{y}$
c) $\frac{y}{x}$
d) $-\frac{y}{x}$

CASE STUDY - IV

If two variables x and y are connected by the relation of the form $F(x, y)=k$, and it is not convenient to express y in terms of x in the form $\mathrm{y}=\mathrm{g}(\mathrm{x})$, such a function is called an Implicit function. To find $\frac{d y}{d x}$ in case of implicit functions, we differentiate both sides with respect to x , taking the derivative of the function of y (terms of y$), \mathrm{h}(\mathrm{y})$ w.r.t. x as $\frac{d}{d y}(h(y)) \cdot \frac{d y}{d x}$.
Using this information find $\frac{d y}{d x}$ for the following functions.

1. If $x^{2}+2 x y+y^{3}=41$
a) $\frac{-2(x+y)}{\left(2 x+3 y^{2}\right)}$
b) $\frac{2(x+y)}{\left(2 x+3 y^{2}\right)}$
c) $\frac{-(x+y)}{\left(2 x+3 y^{2}\right)}$
d) $\frac{(x+y)}{\left(2 x+3 y^{2}\right)}$
2. $e^{x-y}=\log \left(\frac{x}{y}\right)$
a) $\frac{y\left(1-x e^{x-y}\right)}{x\left(y e^{x-y}-1\right)}$
b) $\frac{y\left(x e^{x-y}-1\right)}{x\left(y e^{x-y}-1\right)}$
c) $\frac{x\left(1-x e^{x-y}\right)}{y\left(y e^{x-y}-1\right)}$
d) $-\frac{x\left(1-x e^{x-y}\right)}{y\left(y e^{x-y}-1\right)}$
3. $y=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right),-1<x<1, x \neq 0$
a) $\frac{-x}{\sqrt{1-x^{2}}}$
b) $\frac{x}{\sqrt{1-x^{2}}}$
c) $\frac{-x}{\sqrt{1-x^{4}}}$
d) $\frac{x}{\sqrt{1-x^{4}}}$
4. $y=x \sin y$
a) $\frac{\sin y}{1-x \cos y}$
b) $\frac{\sin y}{1-\cos y}$
c) $\frac{\sin y}{1+x \cos y}$
d) $\frac{x \sin y}{1-x \cos y}$

II) SOLVE THE FOLLOWING QUESTIONS:

1) Show that $f:[-1,1] \rightarrow R$, given by $f(x)=\frac{x}{x+2}$ is One - One. Find the inverse of $f:[-1,1] \rightarrow \operatorname{Range}(f)$.
2) Let $f: N \rightarrow N$ be a function defined as $f(x)=9 x^{2}+6 x-5$. Show that $f: N \rightarrow S$, where S is the range of f , is invertible. Find the inverse of f and hence evaluate $f^{-1}(43)$ and $f^{-1}(163)$.
3) If $f(x)=\frac{3 x-2}{2 x-3}$, prove that $f o f(x)=x, \forall x \in R-\left\{\frac{3}{2}\right\}$.
4) Prove that the composition of two bijective functions is also a bijection.
5) Show that the relation $R=\{(a, b)$: 2 divides $a-b\}$ is an equivalence relation on the set $A=\{0,1,2,3,4,5\}$. Write the equivalence [0].
6) Write the Principal Values of the following:
i) $\sin ^{-1}\left(\sin \left(-600^{0}\right)\right)$
ii) $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$
iii) $\sec ^{-1}\left(2 \tan \frac{3 \pi}{4}\right)$
7) Simplify: \quad i) $\sin ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right), \frac{\pi}{4}<x<\frac{5 \pi}{4}$
ii) $\tan \left\{\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right\}+\tan \left\{\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right\}$
8) If $\tan ^{-1} x-\cot ^{-1} x=\tan ^{-1} \frac{1}{\sqrt{3}}$, find the value of x.
9) Prove that $2 \tan ^{-1}\left\{\tan \frac{\alpha}{2} \tan \left(\frac{\pi}{4}-\frac{\beta}{2}\right)\right\}=\tan ^{-1}\left(\frac{\sin \alpha \cos \beta}{\cos \alpha+\sin \beta}\right)$
10) Prove that $\cot ^{-1} 7+\cot ^{-1} 8+\cot ^{-1} 18=\cot ^{-1} 3$.
