DAV PUBLIC SCHOOL, BARIATU, RANCHI HOLIDAY ASSIGNMENT
CLASS: XII

VERY SHORT ANSWER TYPE QUESTIONS [1 MARK]

(1) Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker?
(AI 2012)
Carbon und silicon both have four valence electrons each. How then are they distinguished ?
(Delhi 2011C)
Define resistivity of a conductor. Write its S.I. unit.
(AI 2011C)
A wire oc resistance $8 R$ is bent in the form of a- ; circle. What is the effective resistance between the ends of a diameter $A B$?

(Delhi 2010)
. Two identical slabs, of a given metal, are joined together, in two different ways, as shown in figures (i) and (ii). What is the ratio of the resistances of these two combinations?

(iii)
nathi 2010C)
The plot of the variation of potential difference across a combination of threc identical cells in series versus current is shown below. What is the emf and internal resistance of each cell?

(Al 2016, Delhi 2008)
The emf of a cell in always greater than its terminal voltage. Why? Give reason.
(Delhi 2013)
Why is the terminal voltage of a cell less than its emf ?
(A1 2013C)
(9) Three cells of $\mathrm{emf} \varepsilon, 2 \varepsilon$ and $5 e$ having internal resiatances $r, 2 r$ and $3 r$ respectively are connected across a variable reststance R as shown in the figure. Find the expression for the current. Plot a graph for variation of current with R.

(A1 2010C]
(10) Two identical cells, each of emf \dot{E}, having. negligible internal resistance, are connected in parallel with each other across an external resistance R. What is the current through this resistance?
(AI 2013)
(ii) A 10 V battery of negligible internal resistance is connected across a 200 V battery and a resistance of 38Ω as shown in the figure. Find the value of the current in circuit.

(Delhi 2013)
(12) In an experiment on meter bridge, if the balancing length $A C$ is ' x ', what would be its value, when the radius of the meter bridge wire $A B$ is doubled? Justify your answer.

(AI 2011C)
In a meter bridge, two unknown resistances R and S when connected in the two gaps, give a null point at 40 cm from one end. What is the ratio of R and S ?
(Delhi 2010C)
Sketch a graph showing variation of resistiviryof carbon with temperature. [Delhi 2006]
(15). The variation of potential difference V with length l in case of two potentiometers P and j Q is as shown. Which one of these two will you prefer for comparing emfs of two primary cells ?
[AI 2006]:

(16) State the underlying principle of a
potentiometer.
(Delhi 2014C)

A resistance R is connected across a cell of emf ε and internal resistance r. A potentiometer now measures the potential difference between the Iterminals of the cell as V. Write the expression for r in terms of ε, V and R.
(Delhi 2011)
Define the term drift velocity of charge carriers in a conductor and write its relationship with the current flowing through it.
(Delhi 2014)
Write the expression for the drift velocity of charge carriers in a conductor of length $\$ \mathrm{~F}$ across which a potential difference ' V ' is applied.
(Al 2014C)
When electrons drift in a metal from lower to higher potential, does it mean that all the free electrons of the metal are moving in the same direction?
(Delhi 2012)
Two conducting wires X and γ of same diameter but different materials are joined in series ucross a battery. If the number density of electrons in X is twice that in Y, find the ratio of drift velocity of electrons in the two wires.

Graph showing the yariation of current versus voltage for a material GaAs is shown in the figure. Identify the region of
(i) negative resistance
(ii) wherc Ohm's law is obeyed. (Delhi 2015)

I- V giaph for a metallic wire at two different temperatures, T_{1} and T_{2} is as shown in the figure. Which of the two temperatures is lower and why?

(AI 2015)
24). Hiut a graph showing the variation of resistivity of a conductor with temperature.
(Foreign 2015)
Show variation of resistivity of copper as a function of temperature in a graph.
(Delhi 2014)
Plot a graph showing variation of current versus voltage for the material GaAs.
(Delhi 2014)

How does one explain increase in resistivity of a metal with increase of temperature ?
(AI 2014C)
Plot a graph showing the variation of resistance of a conducting wire as a function of its radius. Keeping the length of the wire and its temperature as constant.
(Foreign 2013)
Two materials Si and Cu , are cooled from 300 K to 60 K . What will be the effect on their resistivity?
(Foreign 2013)
Show on a graph, the variation of resistivity with temperature for a typical semiconductor.

SHORT ANSWER TYPE QUESTIONS (1) [2 MARKS]

A conductor of length ' l ' is connected to a de source of potential ' V. If the length of the conductor is tripled by gradually stretching it keeping ' V ' constant, how will (i) drift speed of electrons and (ii) resistance of the conductor be affected. Justify your answer. (Foreign 2012) Define drift velocity. Write its relationship with relaxation time in terms of the electric field \bar{E} applied to a conductor.
A potential difference \boldsymbol{V} is applied to a conductor of length l. How is the drift velocity affected when V is doubled and I is halved ?
(Foreign 2010)
Derive an expression for drift velocity of free electrons in a conductor in terms of relaxation tine.
(Delhi 2009)
Two metallic wires of the same material have the same length but cross-sectional area is in the ratio 1:2. They are connected (i) in series and (ii) in parallel. Compare the drift velucities of electrons in the two wires in both the cases (i) and (ii).
(Delhi 2008)
Derive an expression for the resistivity of a good conductor, In termis of the relaxation time
of electrons.
(a) You are required to select a carbon resistor of resistance $47 \mathrm{kc} \pm 10 \%$ from a large collection. What should be the sequence of colour bands used to code it?
(b) Write the characteristics of manganin which make it suitable for making standard resistance.
(Foreign 2011)
Define ionic mobillty. Write its relationship with relaxation time. How does one understand the temperature dependence of resistivity of a semiconductor?
(Foreign 2010)
The sequence of coloured bands in two carbon resistors R_{1} and R_{2} is
(i) brown, green, blue
(ii) orange, black, green

Find the ratio of their resistances. (AI 2010C)
A voltage of 30 V is applied across a curbon resistor with first, second and third rings of blue, black and yellow colours respectively. Calculate the value of current, in $m A$, through the resistor
(AI 2007)

A cylindrical metallic wire is stretched to increase its length by 5\%. Calculate the percentage change in its resistance.

A metal rod of square cross-sectional area a having length / has current I flowing through it when a potential difference of V volt is applied across its ends (figure I). Now the rod is cut parallel to its length into two identical pieces and joined as shown in figure II. What potential difference must be maintained across the length of 21 so that the current in the rod is still I?

(1)

(III)
(Foreign 2016:
Using the concept of drift velocity of charge carriers in a conducter, deduce the relationship between current density and resistivity of the conductor.
(Delhi 2015C)
Estimate the average drift speed of conduction electrons in a copper wire of cross-sectional area $1.0 \times 10^{-7} \mathrm{~m}^{2}$ carrying a current of 1.5 A . Assume the density of conduction electrons to be $9 \times 10^{211} \mathrm{~m}^{-3}$.
(A1 2014)
(444) Explain the term 'drifi velocity' of electrons in a condurtor. Hence obtain the expression for the current through a conductor in terms of 'drift velocity'
(Al 2013)
Write a relation between current and drift velocity of electrons in a conductor. Use this relation to explain how the resistance of a conductor changes with the rise in temperature.
(Delh 2013C)
Define mobility of a charge carrier. Write the relation expressing mobility in terms of relaxation time Give its SI unit. (AI 2013C)
Given the resistances of $1 \Omega, 2 \Omega$ and 3Ω how will you combine them to get an equivalent resistance of (i) $\frac{11}{3} \Omega$ and (ii) $\frac{11}{5} \Omega$?
(Fareign 2015)
A wire of 15Ω resistance is gradually stretched to double its original length. It is then cut into two equal parts. These parts are then connected in parallel across a 3.0 volt battery. Find the current drawn from the battery.
(AI 2009)
A cell of emf ' E ' and internal resistance ' r ' is connected across a variable resistor ' R '. Plot a graph showing variation of terminal voltage ' V of the cell versus the current ' C. Using the plot, show how the emf of the cell and its internal resistance can be determined.
(AI 2014)
(a) Distinguish between emf (E) and terminal voltage (V) of a cell having internal resistance ' r '. (b) Draw a plot shawing the variation of terminal voltage (V) vs the current (l) drawn from the cell. Using this plot, how does one determine the internal resistance of the cell ?
(AI 2014C)
A battery of emf E and internal resistance r when connected across an external resistance of 12Ω, produces a current of 0.5 A . When connected across a resistance of $\mathbf{2 5} \Omega$, it produces a current of 0.25 A . Determine (i) the emf and (ii) the internal resistance of the cell.

A cell of emf E and internal reslstance r is connected to two external resistances R_{1} and R_{2} and a perfect ammeter. The current in the circuit is measured in four different situations :
(i) without any external reistance in the circuit
(ii) with resistance R_{1} only
(iii) with R_{1} and R_{2} in series combination
(iv) with R_{1} and R_{2} in parallel combination

The currents measured in the four cases are $0.42 \mathrm{~A}, 1.05 \mathrm{~A} .1 .4 \mathrm{~A}$ and 4.2 A , but not necessarlly in that order. Identify the eurrents corresponding to the four cases mentioned above.
(Delhi 2012)
A battery of emf 10 V and internal resistance 3Ω is connected to a resistor. If the current in the circuit is 0.5 A , find
(i) The resistance of the resistor;
(ii) The terminal voltage of the battery
(Delhi 2012C)
A straight line plot showing the terminal potential difference (V) of a cell as a function of current (I) drawn from it is shown in the figure. Using this plot, determine (i) the emf and (ii) internal resistance of the cell.

(Dehhi 201iC)
A cell of emf ' E ' and internal resistance ' r ' is connected across a variable resistor 'R. Plot a graph showing the variation of terminal potential ' V with resistance R.
Predict from the graph the condition under which ' V ' becomes equal to ' E. (Delhi 2009)
Use Kirchhoff's riles to determine the potential ' difference between the points A and D when no current flows in the BE of the electric network shown in the figure.

(AI 2015)
Stute Kirchhoffrs rules. Explains briefly how these rules are justified.
(Delhi 2014)
In the electric network shown in the figure, use Kirchhoffis rules to calculate the power consumed by the resistance $R=4 \Omega$.

(Delhi 2014C)

An arnmeter of resistance 0.800 can measure current up to 1.0 A
(i) What must be the value of shunt resistance to enable the ammeter to measure current up io $5.0 \mathrm{~A}^{\text {? }}$
(ii) What is the combined resistance of the ammeter and the shunt?
(Delhi 2013)
Use Kirchhoff s rules to determine the value of the current J, flowing in the carcanet stamen in the figure.

(I Doha: 2013C)
(61) The network PORS, bows in the catch: diagram. has the baticiach of 4 V ard ' \because and negligible internal ichatzace 1 molisammeter of 20Ω resistance as connected between f and
R. Calculate the trading th the miliammetre

(A) 2012()
(62)

In the given circuit. assuming point A to tr e at zero potential. use Kitahbotis tale to determine the potential at poirot n

(A1 2011)

Using Kirchhoff's ruins in the given carat determine (i) the voltage drop acton the unknown resistor R and (id) the current I in the arts $E F$.

(A) 201C)

Use Kirchhofe"s rules to obtain conditions for the baiaciz condition in a Wheatstone bridge.
(Delhi 201s)
(65)

Cakulate the current drawn from the battery by the network of resistors shown in the figure.

(At 2015C)
(6). Cisulate tie value of current drawn form a 3 V Aatecty th the cifturt an shown

(Foreign 2013)
Cakulate the curtin drawn from the battery in the given network.

(Al 2009)

SHORT ANSWER TYPE QUESTIONS (II) [3 MARKS]

In the circuit shown in the figure, find the current through each resistor.

(Delhi 2015C) Calculate the value of the resistance R in the circuit shown in the figure so that the current in the circuit is 0.2 A . What would be the potential difference between points B and E ?

(a) Find the relation between drift velocity and relaxation time of charge carriers in a conductor.
(b) A conductor of length L is connected to a dc. source of emf. V. If the length of the conductor is tripled by stretching it, keeping V constant. Explain how drift velocity would be affected.
(Al 2015)
A steady current flows in a metallic conductor of non-uniform cross-section. Which of these quantities is constant along the conductor : current, current density, electric field, drift speed?
Deduce the relation between current I flowing through a conductor and drift velocity \bar{v}_{d} of the electrons.

In the circuit shown, $R_{1}=4 \Omega, R_{2}=R_{3}=15 \Omega$. $R_{4}=30 \Omega$ and $E=10 \mathrm{~V}$. Calculate the eqquivalent resistance of the circuit and the current in each

(Delhi 2011)
A network of resistors is connected to a 16 V battery of internal resistance of 1Ω as shown in the figure.

(a) Compute the equivalent resistance of the network
(b) Obtain the voltage drops $V_{\Delta A}$ and $V_{C D}$
(Foreign 2010)
Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the electrical resistivity of the material.
(AI 2012)
Write the mathematical relation for the resistivity of a material in terms of relaxation time, number density and mass and charge of charge carriers in it. Explain, using this relation, why the resistivity of a metal increases and that of a semiconductor decreases with rise ' in temperature. Thellhi of a 7 ! State the underlying principle of a potentiometer. Write two factors on which the sensitivity of a potentiometer depends.

In the potentiometer circuit shownin the figure, the balance point is at X. State, giving reason, how the balance point is shifted when
(i) Resistance R is increased?
(ii) Resistance S is increased, keeping R i constant?
(Delhi 2013C)
In the figure a long uniform potentiometer wire $A B$ is having a constant potential gradient. along its length. The null points for the two primary cells of emfs ε_{1} and ε_{2} connected in the manner shown are obtained at a distance of 120 cm and 300 cm from the end A. Find (i) $\varepsilon_{1} / \varepsilon_{2}$ and (ii) position of null point for the cell e_{1}. How is the sensitivity of a potentiometer increased?

Answer the following:
(a) Why are the connections between the resistors in a meter bridge made of thick copper strips?
(b) Why is it generally preferred to obtoin the balance point in the middle of the metre bridge wire?
(c) Which material is used for the meter bridge wire and why?
(AI 2014)
In a meter bridge, the null points is found at a distance of 40 cm from A. If a resistance of 12Ω is connected in parallel with S, the null point occurs at 50.0 cm from A. Delermine the values of R and S.

(Delhi 2010)

For the potentiometer circuit shown in the given figure, points X and Y represent the twag terminals of an unknown emf E°. A student 'observed that when the jockey is moved form the end A to the end B of the potentiometer wire, the deflection in the galvanometer remains in the same direction. What may be the two possible faults in the circuit that could result in this observation?

If the galvanometer deflection at the end B is (i) more, (ii) less, than that at the end A, which of the two faults, listed above, would be there in the circuit?
Give reasons in support of your answer in each case.
(AI 2007)

LONG ANSWER TYPE QUESTIONS [5 MARKS]

(a) State, with the help of a circuit diagram, the working principle of a meter bridge. Obtain the expression used for determining the unknown resistance.
(b) What happens if the galvanometer and cell are interchanged at the balance point of the Lridge ?
(c) Why is it considered important to obtain the balance point near the mid-point of the wire?
(Delhi 2011C)
Use Krichhofi's rules to obtain the balance condition in a Wheatstone bridge.
Calculate the value of R in the balance conditionef the Wheatstone bridge, If the carbon resistor connected across the arm CD has the colour sequence red, red and orange, as is shown in the figure.
If now the resistances of the arms $B C$ and $C D$ are interchanged, to obtain the balance condition, another carbon resistor is connected in place of R. What would now be the sequence of colour bands of the carbon resistor?

(Delhi 2012C)
(a) Derive the relation between current density $' \bar{j}$ ' and potential difference ' V across a current carrying conductor of length ' T, area of crosssection ' A ' and the number density ' n ' of free electrons.
(b) Estimate the average drift speed of conduction electrons in a copper wire of cross-

. (i) In the circuit diagram given below. AB is a uniform wire of resistance 15Ω and length 1 m . It is connected to a cell E_{1} of emf 2 V and negligible internal resistance and a resistance R. The balance point with another cell E_{2} of emf 75 mV is found at $\mathbf{3 0} \mathrm{cm}$ from end A. Calculate the veiue of R.

(ii) Why is potentiometer preferred over a voitmeter for comparison of emf of cells ?
(iii) Draw a circuit diagram to determine internal resistance of a cell in the laboratory.
(Foreign 2016)
(a) State the principle of a potentiometer. Define potential gradient. Obtain an expression of potential gradient in terms of resistivity of the potentiometer wire.
(b) Figure shows a long potentiometer wire $A B$ having a constant potential gradient. The null points for the two primary cells of emfs. E_{1} and E_{2} connected in the manner shown are obtained at a distance of $l_{1}=120 \mathrm{~cm}$ and $I_{2}=$ 300 cm from the end A. Determine (i) $\varepsilon_{1} / \varepsilon_{2}$ and (ii) position of null point for the cell ε_{1} only.

(Foreign 2014) sectional area $1.0 \times 10^{-7} \mathrm{~m}^{2}$ carrying a current
of 1.5 A . [Assume that themumber density of
 conduction electrons is $9 \times 10^{2 \mathrm{~m}} \mathrm{~m}^{-3}$.|

